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Abstract

Spatial omics enables the integration of gene expression with clinical outcome, yet incorporating
spatial single-cell data into predictive statistical models at the population scale remains a
significant challenge. Here, we adapt BSNMani, a Bayesian scalar-on-network regression model
with manifold learning, to incorporate spatial co-expression networks for disease outcome
modeling. Using the Seattle Alzheimer’'s Disease Brain Cell Atlas (SEA-AD) MERFISH dataset
(n=26), we found that Smoothie is a desired method for constructing spatially informed sample-
specific co-expression matrices within the BSNMani framework, among the four benchmarked
methods, including WGCNA, Smoothie, SpaceX, and hdWGCNA. BSNMani reached an accuracy
of AUC = 0.76 for Alzheimer’'s Disease (AD) prediction, while revealing 4 distinct gene-gene co-
expression subnetworks among the patients. We also applied the Smoothie + BSNMani
workframe to predict the patient survival from a breast cancer spatial proteomics dataset obtained
with Imaging Mass Cytometry (IMC) technology. The workframe showed robust predictive
accuracy for patient survival and revealed biologically meaningful subnetworks associated with
tumor progression, immune regulation, hormone signaling, and metabolic reprogramming.
BSNMani is a powerful tool that integrates high-dimensional spatial omics data for clinical
outcome prediction across diverse disease settings, while revealing deep biological insights and

easy interpretation.

Introduction

Recent advances in spatial transcriptomics (ST) have enabled the measurement of gene
expression at near-single-cell resolution while preserving the spatial context within tissues. These

technologies provide unprecedented opportunities to investigate not only the molecular states of
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individual cells but also their spatial organization, interactions, and microenvironments'2. As a
result, ST has transformed our ability to characterize tissue architecture and cellular heterogeneity
in healthy and diseased tissues. Many computational methods have been developed to
characterize gene expression variation across tissue space®, identifying spatial domains®-2, and
construct cell-cell interaction profiles in tissue niches®'°. Together, these approaches have
deepened our understanding of the spatial organization of gene activity within individual tissue

samples.

One promising computational avenue for extracting interpretable, high-level structure from gene
expression data is through co-expression networks. These methods group genes into functional
modules, offering insights into underlying regulatory mechanisms and biological pathways.
However, the sparsity, noise, and additional modality of the spatial context of spatial
transcriptomics data pose great analytical challenges. A growing number of computational
methods have been developed for constructing spatial gene co-expression networks from spatial
transcriptomics (ST) data, including SpaceX'!, Smoothie'?, and hdWGCNA'3. Unlike traditional
co-expression approaches, these models are specifically designed to construct tissue context-
specific co-expression networks across cellular and spatial hierarchies, allowing for the
preservation of both molecular interactions and spatial organization. By capturing spatially
informed co-expression patterns, these methods enable more biologically meaningful
representations of gene networks, which can be further leveraged for downstream analyses such
as module detection, spatial domain identification, and association with phenotypic traits.
Choosing appropriate methods to extract spatial co-expression networks from high-resolution
spatial transcriptomics data is crucial for extracting deep biological information, especially as the

field shifts toward high-resolution platforms and large-scale studies.

Most existing analytical methods for spatial transcriptomics currently focus on single, within-

sample analyses, aiming to uncover disease mechanisms at the individual level. Such
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approaches fall short when it comes to integrative analysis across individuals, especially in
connecting spatial molecular features to clinical outcomes. This methodological gap limits the
translational potential of spatial omics, especially in clinical applications such as treatment
stratification, prognosis, and disease risk prediction. The field urgently needs cross-scale and
efficient methods to correlate ST molecular data and contextual information with patient
phenotype prediction at the population level. This represents the critical next phase for single-cell
research and offers a major opportunity for advancing precision medicine. Recognizing such
opportunity, we herein adapt BSNMani'#, a Bayesian scalar-on-network regression model with
manifold learning, to innovatively analyze spatial co-expression data and corresponding clinical
phenotypes. We present real data examples on the MERFISH and clinical data from Seattle
Alzheimer's Disease Brain Cell Atlas (SEA-AD) study'®'¢, and the Imaging Mass Cytometry (IMC)
and clinical data from Jackson et. al.’s Breast Cancer study'’. Our results achieved both robust
predictive performance and revealed meaningful underlying biological processes related to the

diseases under the study.

Materials and Methods

Description of BSNMani: a Bayesian scalar-on-network regression model with

manifold learning

BSNMani is a novel Bayesian scalar-on-network regression model designed to jointly analyze
high-dimensional networks and clinical scalar outcomes™. It decomposes each subject’s high-
dimensional networks (e.g., co-expression network) into a low-rank representation and integrates
such representation into a regression framework to predict clinical outcomes, while adjusting for

any additional clinical covariates. This unified modeling framework facilitates both biological
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interpretation and accurate prediction of clinical variables. BSNMani comprises two main
components, the network model and the clinical regression model. In the first component,
BSNMani decomposes each subject’s high-dimensional networks Y; € RV*N into a weighted sum

of population-shared subnetworks. Specifically, each network matrix is modeled as:

q
Y =) liwy +6=UNU +¢,
=1

where U=[uy,...,u]€ERN*9 is an orthonormal matrix, where each column captures the basis for
latent subnetworks shared across subjects, and Ai=diag(Ai) is a diagonal matrix encoding subject-
specific subnetwork contributions as summarizing network features. The residual matrix €; is a
symmetric matrix capturing individual-level noise with i.i.d element-wise normal distribution with
variance o2 on the off-diagonal. Notably, the orthogonality constraint UTU=Iq ensures that the
columns of U form an orthonormal frame, and hence lie on the Stiefel manifold V, 5. This manifold
structure enables BSNMani to capture the intrinsic geometric relationships among the latent

subnetworks.
The second component models the scalar clinical outcome C; € R as a linear function of the

q
Ci=)Y_ Bdu+alz+6
=1

subject’s network representation Ai and additional clinical covariates z; € R":

where B/ER, and aER; are regression coefficients linking network features and covariates to the

outcome, and §~N(0,7%) is the residual error. This regression framework allows the model to
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predict the clinical phenotype using network features, while adjusting for potentially confounding

clinical variables.

BSNMani assigns a uniform prior on the Stiefel manifold to the subnetwork basis parameter U,

and conjugate priors for the remainder of the model parameters. For posterior inference,

U=X(X"Xx)"?

M
1 1
logm(X| ~) —itrace(XTX) + — trace (Z AiUinUx>
o
i=1
BSNMani employs a novel hybrid MALA-Gibbs algorithm, using MALA for U since it has no
closed analytical form and Gibbs algorithm for the remaining parameters. To better facilitate
sampling on the Stiefel manifold V,y, BSNMani applies one-to-one polar expansion on U,

projecting it to an Nxqg full rank matrix X on the unconstrained Euclidean manifold and

circumventing orthogonality constraints.

In addition to joint Gibbs-MALA sampling, BSNMani also provides a novel two-stage sampling
strategy to further facilitate convergence in high-dimensional cases., In the first stage, BSNMani

samples subnetwork basis U, network features A, and the noise variance o2 using only the

observed networks {Y}. In the second stage, BSNMani treats the posterior samples of A from the

first stage as fixed covariates and infers only the clinical regression parameters via Gibbs
sampling. Finally, BSNMani employs an additional Metropolis-Hastings step incorporating the

updated normalizing constant based on A to approximate joint sampling™.
Seattle Alzheimer’s Disease Brain Cell Atlas (SEA-AD) MERFISH dataset

We utilized spatial transcriptomics data generated by multiplexed error-robust fluorescence in

situ hybridization (MERFISH) from the SEA-AD project'®. For spatial transcriptomic profiling,
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MERFISH was applied to the middle temporal gyrus (MTG) of 26 SEA-AD donors, resulting in 69
total brain sections'. A custom-designed panel of 140 genes was used to capture spatially
resolved gene expression at single-cell resolution. In total, more than 300,000 cells were profiled
and assigned to molecularly defined cell subclasses based on transcriptomic signatures,
consistent with annotations derived from matched single-nucleus RNA-seq (snRNA-seq)
datasets. All spatial transcriptomics data and donor-level metadata, are publicly available through

the Allen Brain Map portal (https:/portal.brain-map.org/explore/seattle-alzheimers-disea

se) and the ABC Atlas platform.

For spatial transcriptomics data, raw gene-by-transcript tables for each donor were parsed and
aggregated from MERFISH-detected transcripts using specimen-level CSV files. For each
patient, a single representative sample was selected for analysis. Transcripts were filtered to
exclude background elements, including mitochondrial genes, blank probes, and negative control
probes. Gene expression counts were aggregated across cells by computing the total number of
transcripts per gene-cell pair. A minimum total transcript count threshold of 20 was applied per
cell, and cells with fewer than 20 detected transcripts were excluded due to low quality. Spatial
coordinates (X, y) for each cell were computed by averaging detected transcript positions. A Giotto
object was constructed for each sample to encapsulate raw expression and spatial metadata™®.
Normalization and scaling were performed using total-count normalization (scale factor = 10,000),
and both raw and normalized expression matrices were stored for downstream analysis. All
preprocessing steps were implemented in R using the Giotto, dplyr, and data.table packages
within a high-performance computing environment. The resulting gene expression matrices,

spatial coordinates, and clinical metadata were serialized as RDS objects for reproducible access.

Clinical annotations were retrieved from the SEA-AD donor metadata file'® and filtered to include
only individuals with matched MERFISH profiling of the middle temporal gyrus (MTG). All

categorical or ordinal neuropathological traits were numerically encoded for modeling purposes.
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A binary outcome variable indicating clinical diagnosis of dementia (yes = 1, no = 0) was derived
from the SEA-AD consensus clinical diagnostic fields and was used as the primary dependent
variable in subsequent logistic regression analyses. To ensure the meaningfulness of the clinical
covariates under the constraint of the small sample size, each of them was associated with AD
outcome individually and only those with a significant association were kept for BSNmani

modeling (in this case, atherosclerosis).

Breast Cancer (BC) Imaging Mass Cytometry (IMC) dataset

We used a single-cell spatial proteomics dataset derived from the IMC platform in a previous
study on Breast Cancer pathology'’. To ensure sufficient cellular resolution, we removed samples
with low cell counts, defined as those below the first quartile (Q1) of the log-transformed
distribution (log1p < 7.4, ~1,635 cells). The number of filtered segmented cells per patient ranges
from 1,641 to 7,281. Additionally, patients with missing age or survival information (e.g.,
dead/alive status, overall survival time in months) were excluded. After quality control and data
cleaning, data from 253 patients remained, with associated clinical covariates including ER, PR,

HER?2 status, age, tumor grade, and pathological stage.

Each patient sample includes single-cell measurements of 50 metal-tagged proteins at single-
cell resolution within spatial context. The metal tag-protein marker-gene mapping links each
measured metal isotope tag to its corresponding protein marker and the associated gene,
enabling integration of proteomic measurements with gene-level biological information.
Background metal tags and proteins with near-zero variance across cells were excluded, resulting
in a refined panel of 29 informative protein markers spanning immune, epithelial, and other
functional categories. Intensity matrices were z-score normalized across cells for each protein

marker to mitigate batch effects and enable comparison across patients. Finally, a spatial
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coordinate matrix of (x, y) positions for each cell was constructed, retaining only cells with

matching expression and spatial data.

Spatial co-expression network generation

To characterize transcriptomic coordination among genes, we constructed gene co-expression
networks using four approaches: a conventional weighted gene co-expression network analysis
(WGCNA)? as a baseline method, as well as SpaceX'!, Smoothie'?, and hdWGCNA™. WGCNA
was applied to normalized gene expression matrices without incorporating spatial coordinates,
capturing global transcriptome-wide correlation patterns based on Pearson correlation
coefficients and hierarchical clustering of gene modules. Smoothie takes spatial transcriptomics
data and outputs gene co-expression modules by smoothing expression, computing spatial
correlations, and clustering significant gene pairs. hdWGCNA inputs pseudobulk gene expression
aggregated by clusters or spatial domains and outputs co-expression modules using the WGCNA
framework. SpaceX uses spatial gene expression and coordinates to infer sparse gene co-

expression networks through a spatial Poisson model.

Identification of subnetwork gene co-expression modules

To study the structure of subnetworks and ensure consistent gene ordering across the heatmaps,
we applied the Similarity Network Fusion (SNF) technique to integrate the subnetwork matrices
into a single fused matrix?'. This approach preserves the distinct features of each individual
subnetwork in the same order, while enabling effective pattern comparisons. Gaussian Mixture
Modeling (GMM) was then performed on the fused matrix to cluster the gene features into
expression modules based on similarity in their co-expression profiles??. The resulting clustering
was used to unify the gene ordering across all subnetwork heatmaps, thereby enhancing

interpretability and visual comparison.
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Gene Set Enrichment Analysis (GSEA)

Gene Set Enrichment Analysis (GSEA) was performed on gene co-expression modules detected
from each subnetwork to identify biologically relevant pathways. We utilized the enrichR*® R
package to conduct enrichment analysis against KEGG?* and Gene Ontology (GO)% biological
process databases. Pathways were filtered based on statistical significance, retaining those with
adjusted p-values below 0.05. Enriched pathways were further examined for biological relevance

and used to interpret the functional roles of each subnetwork.

Survival Analysis

Survival analysis was conducted using Cox proportional hazards regression?® to evaluate the
association between spatial proteomics data’s loading A;, features and patient survival outcomes.
The model included normalized subnetwork loadings as predictors, adjusting for relevant clinical
covariates such as age, tumor grade, and clinical subtypes. Risk scores were calculated as linear
combinations of estimated coefficients and predictor values. Patients were stratified into high-
and low-risk groups based on the median risk score. Kaplan-Meier curves were generated to
visualize survival differences between groups, and statistical significance was assessed using

the log-rank test. Model performance was evaluated by the concordance index (C-index).

Results

Overview of BSNMani framework

BSNMani is a Bayesian scalar-on-network regression algorithm designed to link subject-specific
network structures with clinical outcomes. In this work, we innovatively pioneer its adaptation in

spatial omics data measured at the population scale. We apply it to extract spatially-informative
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single-cell gene expression features that are linked to patient clinical phenotypes (Figure 1), an
area where the generalized computational methods are scarce. The BSNMani framework on
spatial omics begins with two types of inputs: (1) a set of symmetric matrices representing subject-
level network data, and (2) individual clinical information including demographic variables (e.g.,
sex and age), treatment records, and clinical outcomes (e.g., dementia diagnosis). The first
network data may include gene co-expression matrices derived from spatial transcriptomics
technologies (e.g., MERFISH) or any other biologically meaningful symmetric network

representations.

The BSNMani algorithm consists of two components. In the first component, it decomposes each
input network Y; € RNNinto a linear combination of g shared population-level subnetworks. These
subnetworks, encoded in the orthonormal basis matrix U € RN9, capture latent functional
structures that are common across individuals. Subject-specific subnetwork loadings Ai € R4
quantify the extent to which each latent subnetwork contributes to the individual's observed
network. This decomposition not only reduces dimensionality but also yields biologically
interpretable features that summarize network variation at the subject level. In the second
component, the estimated subnetwork loadings Ai are used as predictors in a regression model
to estimate their associations with clinical outcomes, while adjusting for clinical covariates such
as sex, age, and treatment. This scalar-on-network regression framework enables the
identification of subnetworks that are predictive of the clinical phenotype, providing insights into
the molecular mechanisms underlying disease heterogeneity. Overall, BSNMani offers a unified
and scalable approach for integrating high-dimensional symmetric network data and clinical

phenotypes, while maintaining biological interpretability.
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Selection of spatial co-expression methods

In spatial transcriptomics research, constructing accurate gene co-expression networks is
essential for elucidating spatial regulatory mechanisms. BSNMani is a regression model that
incorporates sample-specific co-expression networks as key inputs. The performance of this
model largely depends on how these co-expression matrices are constructed. While conventional
methods such as WGCNA have been widely used to construct co-expression networks in non-
spatial transcriptomics data, they do not incorporate spatial proximity between cells and thus may
be suboptimal for spatially resolved single-cell data. To address this limitation, we evaluated
WGCNA against several methods, including hdWGCNA, Smoothie, and SpaceX, on SEA-AD
MERFISH data. These methods have recently been developed to incorporate spatial information

during co-expression network construction (Figure 2).

For each of the four co-expression matrix construction methods (WGCNA, hdWGCNA, smoothie,
SpaceX), we varied the number of subnetworks g among the population in BSNMani
decomposition (g = 2, 3, 4, or 5). Our objective was to predict the AD patients among the samples,
using logistic regression. Given the small sample size (n = 26), we employed leave-one-out cross-
validation (LOOCV) to assess model performance. Six metrics—accuracy, precision, recall, F1
score, specificity, and area under the curve (AUC)—were used to comprehensively evaluate the
predictive power of each g configuration. Among all combinations of g values and co-expression
generation methods, we found that the Smoothie method with ¢ = 4 yields the best overall
performance, achieving an accuracy of 0.74, an AUC of 0.76, and an F1 score of 0.63 (Figure
2a, Supplementary Table 1). These values substantially outperform the best BSNMani models
obtained by other methods with respective g-values. Notably, co-expression matrices obtained
from WGCNA, the non-spatial baseline method, only achieved an accuracy of 0.67 and an AUC
of 0.47 in the BSNMani model when g = 4. This confirms that incorporating spatial context leads

to clear improvement in predicting AD cases by BSNMani. Moreover, a close examination of the
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co-expression matrices reveals that Smoothie and hdWGCNA have increased signal-to-noise
levels compared to WGCNA; whereas the shared co-expression matrices by SpaceX have
reduced patterns (Figure 2b). Based on these findings, we conclude that Smoothie is the most

suitable co-expression matrix construction method for the MERFISH spatial transcriptomics data.

Interpretation of BSNMani model on AD prediction using MERFISH SEAAD data

BSNMani yields gene-gene co-expression subnetworks and their corresponding loading vector
Ni, where Ai are used to construct the clinical model to predict patient phenotype. We thus focus
their interpretations, exemplified by the best AD prediction BSNMani model (g = 4) above using

MERFISH SEAAD data.

Figures 3a-d present heatmaps for each of the four subnetworks. Clear co-expression patterns
(modules) exist, with some modules (eg, boxed areas) showing strong activation or suppression
in specific subnetworks. We extracted the genes in these modules for downstream functional
gene set enrichment analysis (GSEA), stratified by upregulated and downregulated genes
separately. Several representative pathways related to synaptic signaling and neuronal structure
are enriched with activation patterns in Alzheimer's disease (AD). Interestingly, subnetwork 1 and
Subnetwork 2 demonstrated distinct AD-relevant biological signatures. Notably, Axonogenesis
(G0O:0007409) is enriched in Subnetwork 1, whereas Chemical Synaptic Transmission
(GO:0007268) and Glutamate Receptor Signaling Pathway (GO:0007215) are repressed in AD,
reflecting the well-known synaptic dysfunction in AD?"28, This dichotomy underscores the spatial
and cellular heterogeneity of AD-related transcriptional changes. On the other hand, subnetwork
2 shows distinct enrichment in functions related to cell migration, neurogenesis, and immune
signaling. Suppressed GO pathways such as Neuron Migration (GO:0001764) and Generation of

Neurons (GO:0048699) point to impaired neuroplasticity and memory function, as well as reduced
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proliferation and differentiation capacity of neural stem cells in Alzheimer's disease patients?%2°,
The tripartite plot in Figure 3e illustrates the associations among latent subnetworks, enriched
pathways, and their constituent genes. Notably, we observed downregulation of the Glutamatergic
Synapse pathway in subnetwork 1, which includes genes such as GRIN2A and GRIN3A—
encoding NMDA and glutamate receptors essential for synaptic plasticity and memory
formation3%3'. Disruption of glutamatergic signaling has been implicated in excitotoxicity, a central
pathological mechanism in Alzheimer's disease®34. In addition, subnetwork 3 showed
downregulation of the Cellular Response to Oxygen-Containing Compound (GO:1901701), which
includes genes such as RORB and RYRS3. This suggests a reduced cellular capacity to respond
to oxidative stress, a hallmark of Alzheimer's disease pathophysiology®*-3’. These findings
highlight diverse transcriptional programs underlying Alzheimer's disease, underscoring its

molecular and cellular heterogeneity.

log (11)) = —6.3724 + 2.4304- Atherosclerosis — 0.4934-\; + 0.4378-\y + 0.7928-\3 — 0.4760-)\,4
P

where p = Pr(Y = 1) denotes the probability of Dementia.

The final logistic regression model is shown above, consisting of five predictive variables,
including atherosclerosis and Ai (i=1,2,3,4). As expected, atherosclerosis is positively associated
with AD outcome. Other Ai also have significant coefficients, though less in values than
atherosclerosis. Interestingly, A2, and A3 all have positive coefficients while A1, and A4 have
negative coefficients. We collected these AD predictors together in a heatmap (Figure 3f), where
we observed that individuals with lower expression across all subnetworks tend to show a lower

likelihood of progressing to dementia.

In summary, the analysis demonstrates that BSNMani not only yields good statistical predictions

in spatial transcriptomics-based disease modeling but is also biologically interpretable easily. a
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bridge between statistical modeling and biological discovery, and showcasing its potential in

translational spatial omics research.

Prediction of patient survival by BSNMani using a breast cancer cohort with

Imaging Mass Cytometry (IMC) data

To evaluate the generalizability of BSNMani in different single-cell data modalities and disease
contexts, next, we applied it to predict the survival time of 253 breast cancer patients'” whose
tumor tissues underwent single-cell Imaging Mass Cytometry (IMC) assays (Figure 4, Methods).
Similarly, we adopted Smoothie as the method to generate gene-gene co-expression networks
from each of the 253 patients with single-cell proteomics data comprising 29 protein markers. The
comparison of different co-expression generation methods does confirm that Smoothie is a good
method with high signal-to-noise ratio on a patient's co-expression matrix (Supplementary

Figure 1).

To determine the optimal number of latent subnetworks for modeling the IMC breast cancer
dataset, we tested q=2 to 8 across five random seeds. We assessed the model performance
using the concordance index (C-index) from downstream Cox proportional hazards (Cox-PH)
regression. As shown in Figure 4a, q=3,4,5 yielded similar and the highest C-index values (mean
C-Index = 0.69). We selected g=5 as the optimal choice, based on the finer-grained biological
interpretations using subnetworks. The BSNMani Cox-PH clinical model includes five loading
vector Ai. and three clinical covariates: age, tumor grade, and clinical subtypes. To demonstrate
the clinical relevance, we stratified patients into high- and low-risk groups using the median
predicted risk score. The Kaplan-Meier survival curves on these two risk groups show clear and
significant separation with the log-rank p = 8.23e-10, confirming the clinical relevance of BSNMani

(Figure 4b).
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We further analyzed the patterns and biological functions of the five subnetworks from the breast
cancer IMC data, using the gene-gene co-expression heatmaps alongside their corresponding
pathway enrichment bubble plots (Figures 4c-g). Each subnetwork captures unique spatial co-
expression patterns and biological functions, as revealed by Gene Ontology (GO) and KEGG
pathway analysis. To visualize all key genes and pathways in the five subnetworks, we illustrate
them together in a tripartite graph in Figure 4h. Some very interesting patterns emerge:
Subnetwork 1 is predominantly associated with cell mobility and shape changes (eg. EMT) with
oncogenes EZH2 and TWIST1 acting as central hubs. Subnetwork 2 exhibits high transcriptional
activities and unique enrichment of hormone receptor signaling genes, such as PGR, ESR1, and
GATAZ, distinguishing it from the other subnetworks. Subnetwork 3 shows anti-apoptotic activity
and PD-1/PD-L1 checkpoint pathway suppression, subnetwork 4 has high degrees of
differentiation and ER signal pathway, and subnetwork 5 has enhanced fatty acid metabolism
while suppressing many proliferation signaling pathways. The subnetwork analysis thus provides

new insight into tumor heterogeneity in addition to the classic molecular subtypes.

Discussion

In this study, we adapted BSNMani to integrate spatial co-expression structures with clinical
outcomes. We exemplified the population-scale phenotypic predictions using multiple single-cell
resolution studies, including single-cell transcriptomics and proteomics platforms. We
demonstrated that a spatially informed co-expression network can be modeled by BSNMani
algorithm to reveal interpretable spatial-molecular patterns among patients. This approach is
expected to effectively facilitate (1) the discovery of spatial genetic mechanisms in complex

diseases; (2) identify the spatial-omics features associated with patients' phenotype.
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BSNMani's advantage in joint analysis of high-dimensional networks and clinical outcomes on
the population scale lies in its core methodology. Its framework assumes biological networks
consist of latent connectivity structures and leverages manifold learning techniques to fully
capture their underlying geometry. This makes BSNMani well-suited for modeling complex
biological networks such as spatial co-expression networks, which often reflect an accumulation
of multiple biological processes. Furthermore, by estimating population-level subnetworks,
BSNMani reveals interpretable insight into the underlying connectivity patterns that characterize
populations of networks. In addition, BSNMani also extracts subject-specific network features
and associates them explicitly with clinical outcomes, enabling both prediction of clinical outcome

and quantifiable characterization of how individual network variations relate to clinical phenotypes.

We demonstrate the utility of the BSNMani model using a spatial transcriptomics dataset of
Alzheimer’s disease and another spatial proteomics dataset of breast cancers. Despite being a
small dataset of 26 patients, BSNMani reached high accuracy (AUC of 0.76) and revealed some
very interesting and distinct biological pathways associated with each of the four subnetworks.
For example, Axonogenesis (GO:0007409) is enriched in Subnetwork 1, potentially reflecting
structural remodeling or axonal sprouting in excitatory neuron populations as a compensatory
response to neurodegeneration®3°. Conversely, the suppression of Chemical Synaptic
Transmission (GO:0007268) and Glutamate Receptor Signaling Pathway (GO:0007215) reflects
the well-documented synaptic dysfunction in AD?"28, This dichotomy underscores the spatial and
cellular heterogeneity of AD-related transcriptional changes. Subnetwork 2 shows distinct
enrichment patterns in GO and KEGG pathways related to cell migration, neurogenesis, and
immune signaling. Enrichment of Negative regulation of cell motility (GO:2000146) has been
implicated in Alzheimer's disease, primarily reflecting impaired microglial migration and reduced
cytoskeletal plasticity, which may hinder the clearance of amyloid plaques and disrupt

neuroinflammatory responses*°. Suppressed GO pathways such as Generation of Neurons
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(GO:0048699) point to reduced proliferation and repair of neural cells in Alzheimer's disease

patients?®.

Similarly, the five subnetworks from the breast cancer IMC data also revealed interesting patterns
and biological functions (Figures 4c-g). Each subnetwork captures unique spatial co-expression
patterns. Subnetwork 1 is characterized by the activation of key oncogenic processes, including
epithelial-to-mesenchymal transition (EMT), cellular motility, and migration, biological programs
closely linked to enhanced tumor invasiveness and metastatic dissemination. EMT and cell
migration suggest a transcriptional reprogramming toward a mesenchymal-like phenotype, often
associated with increased aggressiveness in breast cancer*'#2. At the same time, subnetwork 1
shows suppression of apoptotic signaling pathways, including p53-mediated intrinsic apoptosis,
and ECM-receptor interaction points to impaired cell death mechanisms and disrupted cell-matrix
adhesion, both of which are critical for maintaining epithelial integrity*>*4. Subnetwork 2 shows
activation of steroid hormone receptor signaling and transcription regulation pathways, along with
activated breast cancer-related, ErbB, prolactin, and adherens junction pathways. Interestingly,
PD-1/PD-L1 immune checkpoint pathway is repressed in both subnetworks 2 and 3, suggesting
reduced immune evasion signals**“6. Additionally, subnetwork 3 exhibits downregulation of
central carbon metabolism. Subnetwork 4 shows activation of prolactin signaling and Th1/Th2
cell differentiation pathways, which may represent another group linked to enhanced tumor
differentiation and immune response*”#. Subnetwork 5 is associated with downregulation of the
TGF-beta signaling pathway, while suppressed regulation of ERK1/2 and MAPK points to
attenuated proliferative and stress-response signaling*®-%'. In all, the subnetwork analysis reveals
that the landscape of breast cancer subtypes is very complex when linked to patient survival

differences.

In summary, we present the initial yet significant effort to link the spatial single-cell omics features

with patient phenotype at the population scale, paving the way for precision medicine through
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incorporating spatial genomics information. We show that BSNMani is a versatile and
interpretable framework that is easily adaptable to various types of spatial omics data. In the
future, we plan to conduct additional cell-type-specific and cell-type combined modeling through

BSNMani in order to improve the predictability of the spatial features.
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Figure 1 Workflow of BSNMani workflow. BSNMani is a two-stage Bayesian scalar-on-

network regression framework designed to link subject-specific network structures with clinical
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outcomes. The workflow begins with two types of inputs: (1) a set of symmetric matrices
representing subject-level network data, which may include gene co-expression matrices
derived from spatial transcriptomics technologies (e.g., MERFISH), structural or functional brain
connectivity matrices (e.g., from MRI), or any other biologically meaningful symmetric network
representations; and (2) individual clinical information including demographic variables (e.g., sex

and age), treatment records, and clinical outcomes (e.g., Dementia diagnosis).
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Figure 2: Selection of the best spatial co-expression generation methods using the SEA-
AD MERFISH data. a) Performance comparison of the best q values across four methods. b)
Gene co-expression matrices, for example, patient H21.33.014 constructed using different

spatial co-expression construction methods: WGCNA (baseline), hdWGCNA, SpaceX, and

Smoothie.


https://doi.org/10.1101/2025.08.09.25333297
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.08.09.25333297; this version posted August 12, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Subnetwork 1.--- Subnetwork 2 " Terma by Aetvat
a - oo e |
sddik z E L= I'_L Activated ‘Suppressed 1 L e i e G s . Activated Supressed
| i | ‘Synaptic Transmission, Giutameric Roguiation of DNA-Template Transcription (60.9006255), »
" (60:0035249) L
Rogulation of Trans-Syneptic Signaling Regulation of Cell Migration (c0:002¢336). .
(60:0099177) . Protein Processing (GO.0016485).
Loy ;
i o B e
et o prp—— )
o ooy Wegeie Rt ol oty G s0ri . s
(60:0007268) . L ‘Generation of Neurons (GO-0048699)- . .
! e : i
roregeds g
o s
— r—— -
o i o o
Long-Term Dopression Gap hnction! < &
:
i
P i it . H
il .
e e i s i
C == =y
] .
pr— ==
PRI o oo st
‘Regulation of Neuron Migration (60-2001222)- g & -1
a oo e [esiatonof Transcriponby A Pbrmerae 19
worre e —
e e
Lokt Phosmorstion otz e 8
W"‘Ww?mlm““} Negative Regulation of Neurogenesis o 008
g -
e e :
oyl . Lot i
TOFSetaSignaling Patway. .|| [ Ceeen
Phosphatidylinositol Signaling System- o
Pttt s | "
[ B
Onpocininaig oty Giossminetycan Degadion. g
lipid Metabolism. .
SO |
—
e

puegr DCN ASTNZ pogp,
ROBO1 MEIS2

(CACNA203 CLSTN2 1 o
DACH1 Chemical  Generation of  Glutamate PAX6 l Dementia
Ne: Recsplor _= No
| m— 0.8

Synaptic g Signalin
meas Transmssion (60:0048699) o cor4
Onon (63 ookrze8) Pefuay - Newon |
signaling \ (G0:0007215)  pgration
CNTNS pathay \ (G0:0001764) ctss Yes
Reguiation of Negative
3 \ e
e e —
S/ yans (G0:2000146)
Posiive | 0.6
Reguition of .
LHX6  Avonogenesis E8F1
(G0:0002409) Cel Populati
eraton

o
'S

Spinocerebellar
ataxia.

___Regulation of
~Franscription by
T TACR1

o
)

Neuroactive
ITGBS8  jgand-receptor
interaction Polymerase Il
(60:0006357)
Cel Surface

osiyss SULF1

RORB Cellular
Response to-
Oxygen-Containing

|
o

Rece

‘Protein Tyrosine
Kinase.

Signaling GRIK3

TNR o]
(GO:0007169)
ation of

Compound
(G0:1201701)
Rog

8
g

NRG1 Gutamatergic | < NOS1
syapse Signaling
(60:0099177)
EGFR | B0 SEMAZE o k [ ) ) [
Gap uncton Processing ] 5 3 3 3 3
il (GO0016485) 3 o T T o o
SLIT3 Regulation of Cal pLe1 -
Transciption by y v o o Q Q o o
RNA sogiea = » ] O O 0
TOX Polymerase I Regulationof ~ Pathway GRIN3A - o | | | |
(G0:0000122) Cell Migratior E. o w L ~ N
L Axon glidance
a1 Reguiation of GO0005%4) PDGFD o
Gene o
ROBO2 Expression oce »
(GO:0010468) —_—
i GRID2 o
FEZF2

GRIN2A  PRKG1

Figure 3: Application of BSNMani on the MERFISH SEAAD dataset. a-d) Heatmaps and
pathway enrichment bubble plots for each of the four latent co-expression subnetworks (q = 4)
extracted by BSNMani from the SEA-AD study. e) Network visualization of key gene hubs and
their connections across subnetworks (red edge: activated; blue edge: suppressed). f) Heatmap
of values on atherosclerosis and the four lambda values (after Min-Max normalization) in the

final BSNMani model. Hierarchical clustering was applied to the patients to identify patterns of
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similarity. The color bar on the left indicates dementia status (red: Dementia, blue: non-

Dementia).
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Figure 4: Application of BSNmani of IMC breast cancer dataset. a) Model predictive
performance (C-index) across latent subnetworks q = 2 to 8 using the Smoothie + BSNMani
pipeline. b) Kaplan-Meier survival curves stratified by predicted risk groups from CoxPH
modeling. c-g) Heatmaps and pathway enrichment bubble plots for each of the five latent co-
expression subnetworks (q = 5) extracted by BSNMani. h) Network visualization of key gene

hubs and their connections across subnetworks (red edge: activated; blue edge: suppressed).

Supplementary Figure 1: Gene-gene co-expression heatmaps generated using different

co-expression generation methods on the IMC breast cancer dataset
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Supplementary Table 1: Selection of spatial co-expression methods. Six metrics—
accuracy, precision, recall, F1 score, specificity, and area under the curve (AUC)—are used to
comprehensively evaluate the predictive power of each q configuration (q = 2 to 5) via leave-

one-out cross-validation (LOOCV).

WGCNY - LOOCY results using different q-values
Accuracy Precision Recall F1 Score Specificity AUC

2 0.52 0.33 0.30 0.31 0.65 0.56
3 0.60 0.45 0.50 0.48 0.65 0.61
4 0.67 0.57 0.40 0.47 0.82 0.47
3 0.66 0.55 0.50 0.52 0.76 0.57
hdWGCNA - LOOCY results using different q-values
Accuracy Precision Recall F1 Score Specificity AUC
2 0.58 0.44 0.40 0.42 0.69 0.62
3 0.62 0.50 0.50 0.50 0.69 0.49
4 0.54 0.40 0.40 0.40 0.63 0.51
5 0.65 0.57 0.40 0.47 0.81 0.68
Smoothie - LOOCY results using different q-values
Accuracy Precision Recall F1 Score Specificity AUC
2 0.59 0.45 0.50 0.48 0.65 0.54
3 0.63 0.50 0.40 0.44 0.76 0.66
4 0.74 0.67 0.60 0.63 0.82 0.76
5 0.52 0.36 0.40 0.38 0.59 0.45
SpaceX - LOOCY results using different q-values
Accuracy Precision Recall F1 Score Specificity AUC
2 0.58 0.44 0.40 0.42 0.69 0.62
3 0.54 0.38 0.30 0.33 0.69 0.49
4 0.54 0.38 0.30 0.33 0.69 0.59
5 0.58 0.44 0.40 0.42 0.69 0.59
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